Evaluation of the Dedekind Eta Function

نویسندگان

  • ROBIN CHAPMAN
  • WILLIAM HART
چکیده

We extend the methods of Van der Poorten and Chapman [7] for explicitly evaluating the Dedekind eta function at quadratic irrationalities. Via Hecke L-series we obtain evaluations in some new cases. Specifically we provide further evaluations at points in imaginary quadratic number fields with class numbers up to four. We also describe techniques, which make use of modular equations, which provide additional evaluations not obtained via the L-series techniques, and we give a number of these evaluations explicitly here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eta-Redexes in Partial Evaluation

Source-program modifications can make a partial evaluator yield dramatically better results. For example, eta-redexes can preserve static data flow by acting as an interface between values and contexts. This note presents a type-based explanation of what eta-expansion achieves, why it works, and how it can be automated. This leads to a unified view of various source-code improvements, including...

متن کامل

A New Class of Theta Function Identities in Two Variables

We describe a new series of identities, which hold for certain general theta series, in two completely independent variables. We provide explicit examples of these identities involving the Dedekind eta function, Jacobi theta functions, and various theta functions of Ramanujan. Introduction Let z ∈ H = {x+ yi : x, y ∈ R, y > 0} and for each x ∈ R set q = exp(2πixz) and e(x) = exp(2πix). The Dede...

متن کامل

Class Invariants from a New Kind of Weber-like Modular Equation

A new technique is described for explicitly evaluating quotients of the Dedekind eta function at quadratic integers. These evaluations do not make use of complex approximations but are found by an entirely ‘algebraic’ method. They are obtained by means of specialising certain modular equations related to Weber’s modular equations of ‘irrational type’. The technique works for a large class of et...

متن کامل

Values of the Dedekind Eta Function at Quadratic Irrationalities

Let d be the discriminant of an imaginary quadratic field. Let a, b, c be integers such that b − 4ac = d, a > 0, gcd(a, b, c) = 1. The value of |η ( (b + √ d)/2a ) | is determined explicitly, where η(z) is Dedekind’s eta function η(z) = e ∞ ∏ m=1 (1− e) ( im(z) > 0 ) .

متن کامل

Weight of a link in a shortest path tree and the Dedekind Eta function

The weight of a randomly chosen link in the shortest path tree on the complete graph with exponential i.i.d. link weights is studied. The corresponding exact probability generating function and the asymptotic law are derived. As a remarkable coincidence, this asymptotic law is precisely the same as the distribution of the cost of one “job” in the random assignment problem. We also show that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004